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Spiral vortex breakdown as a global mode
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The spiral form of vortex breakdown observed in the numerical simulations of Ruith
et al. (J. Fluid Mech., vol. 486, 2003, p. 331) is interpreted as a nonlinear global mode
originating at the convective/absolute instability transition point in the lee of the
vortex breakdown bubble. The local absolute frequency at the transition station is
shown to yield a satisfactory prediction of the precession frequency measured in the
three-dimensional direct numerical simulations.

1. Introduction
Vortex breakdown is a widespread phenomenon affecting swirling jets as soon as the

swirl parameter S, which compares the intensity of the azimuthal velocity component
to its axial counterpart, is large enough. It is observed both in its axisymmetric form,
the so-called breakdown bubble, and in its spiral form. Spiral vortex breakdown
appears to have been first described by Lambourne & Bryer (1961) on delta-wings,
Sarpkaya (1971), Faler & Leibovich (1977) and Escudier & Zehnder (1982) in tube
experiments, and Spall & Gatski (1991) in numerical simulations of the Navier–
Stokes equations. The coexistence of bubble and spiral breakdown states for the
same parameter settings was first visualized in the famous experiment of Lambourne
& Bryer (1961). The particle tracking velocimetry (PTV) measurements of Brücker
& Althaus (1995) have further revealed a periodic switch between the bubble and
spiral states. The physical mechanisms at the origin of the helical forms of vortex
breakdown have been actively discussed to a point where some authors have even
questioned their existence and viewed them as pure visualization artifacts (see the
review by Escudier 1988). We adopt here the point of view of Escudier (1988) and
denote as spiral vortex breakdown the synchronized helical states characterized by
an azimuthal wavenumbers of m =1, rotating in time in the same direction as the
swirling base flow but winding in space in the opposite direction. These modes should
be distinguished from higher-order helical co-winding modes that have also been
observed for swirl numbers below vortex breakdown onset for instance by Escudier
& Zehnder (1982) or Billant, Chomaz & Huerre (1998).

The aim of the present study is to demonstrate that the non-axisymmetric spiral
vortex breakdown states observed at moderate Reynolds numbers may be interpreted
as resulting from a global instability of the axisymmetric breakdown state. More
specifically, following suggestions of Escudier, Bornstein & Maxworthy (1982),
Maxworthy (personal communication) and Delbende, Chomaz & Huerre (1998),
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we examine whether the spiral vortex breakdown might result from the development
of a nonlinear global mode triggered by the absolute instability of axisymmetric
vortex breakdown viewed as an appropriate base flow. For a review of these concepts,
the reader is referred to Huerre & Monkewitz (1990) and Chomaz (2005). Yin et al.
(2000) and Ruith et al. (2003) have recently shown that the absolute/convective
instability properties associated with the m =1 mode of the Batchelor vortex compare
well qualitatively with the experimental and numerical (respectively) characteristics
of spiral vortex breakdown states. It should be stressed however that their swirling jet
velocity profiles at various streamwise stations do not resemble those of the Batchelor
vortex. Our objective is to quantitatively compare the predictive criterion of the
weakly non-parallel nonlinear global mode theory of Couairon & Chomaz (1999)
and Pier, Huerre & Chomaz (2001) to the three-dimensional numerical experiments
of Ruith et al. (2003) using as a base flow their axisymmetric vortex breakdown states.

2. Base flow and direct numerical simulation results
The base flows are obtained by solving the axisymmetric Navier–Stokes equations in

a semi-infinite domain as discussed in detail in Ruith et al. (2003). The velocity profile
of Grabowski & Berger (1976) is imposed at the inlet. If the centreline jet velocity Uc

and jet radius R are used as reference scales the non-dimensional azimuthal, radial
and axial velocities are

Uθ (r, z = 0) = Sr(2 − r2) for 0 � r � 1, (2.1a)

Uθ (r, z = 0) = S/r for r > 1, (2.1b)

Ur (r, z = 0) = 0, (2.2)

Uz(r, z = 0) = 1, (2.3)

where the swirl number S is the non-dimensional axial vorticity on the axis. The
associated Reynolds number is defined as Re = UcR/ν, where ν is the kinematic
viscosity.

A typical result of the axisymmetric direct numerical simulation (DNS) is depicted
in figure 1(a) for Re = 200 and S = 1, and denoted as our reference case. This flow
state is characterized by a vortex breakdown bubble with its associated recirculation
zone and stagnation point. For the same parameter setting as in figure 1(a) but upon
relaxing the axisymmetry assumption, one obtains the typical instantaneous streaklines
illustrated in figure 1(b). The three-dimensional DNS was initiated by imposing an
initial random noise on the base flow. According to Ruith et al. (2003), the flow settles
into limit-cycle oscillations at a well-defined non-dimensional frequency ωNL

G = 1.18.

3. Local stability analysis
The local stability analysis refers to the characteristics of the base flow at each axial

station z, under the assumption of strict parallelism. The aim of the local study is
to compute the maximum temporal growth rate ωmax

i (z) as well as the local complex
absolute frequency ω0(z). The sign of its imaginary part ω0,i(z) determines if the flow
is locally absolutely unstable (ω0,i(z) > 0) or convectively unstable (ω0,i(z) < 0). The
weakly non-parallel but strongly nonlinear theory of Pier et al. (2001) suggests that,
if there exists a station zC/A where ω0,i(z) vanishes and where the flow changes from
convectively unstable for z < zC/A to absolutely unstable for z > zC/A, a nonlinear
global mode may be triggered with a front located at zC/A. The global mode then
inherits the real absolute frequency ω0(zC/A) as global frequency ωNL

G .
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Figure 1. (a) Base flow streamlines at Re = 200, S = 1, obtained from DNS by imposing
axisymmetry. (b) Corresponding instantaneous streaklines in a (y, z) projection at t = 1850 for
the same parameter setting (Ruith et al. 2003).

At a given station z the base flow profiles Uz(z, r), Uθ (z, r) are first extracted
from the axisymmetric DNS of Ruith et al. (2003) and interpolated onto a square
Cartesian grid in order to match the input requirements of the stability code detailed
below. Under the parallel flow hypothesis, the basic flow is assumed to be steady
and uniform in the axial direction, with viscous diffusion being neglected. The radial
velocity component Ur (z, r) is also ignored. The validity of these assumptions may
be quantified by evaluating the non-parallelism parameters

β1(z) = supr

(
∂Uθ

∂z
,
∂Uz

∂z

)
, β2(z) = supr

(
Ur

max(Uz, Uθ )

)
. (3.1a, b)

Figure 2 represents the evolution of β1(z) and β2(z) as a function of the streamwise
coordinate z. It is seen that the quasi-parallel assumption is mostly violated in the
recirculation zone.

3.1. Numerical implementation

The spatio-temporal instability properties are retrieved from DNS of the linear
impulse response originating from an initial localized disturbance as introduced
by Delbende et al., (1998). The main feature of the method is that it directly
gives access to the most amplified mode for each pair of ray velocity vg = z/t and
azimuthal wavenumber m, without necessitating a complex-plane analysis. We focus
our attention on the case m =1 and vg = 0 if not explicitly mentioned otherwise. Note
that this procedure also allows one to efficiently access the temporally most amplified
mode for each axial and azimuthal wavenumber pair k and m. The Navier–Stokes



74 F. Gallaire, M. Ruith, E. Meiburg, J.-M. Chomaz and P. Huerre

2 4 6 8 100

0.3

0.6

0.9

1.2

z

β

Figure 2. Evolution of the non-parallelism parameters β1(z) (solid line) and β2(z) (dashed
line), as defined by equations (3.1a, b), as a function of z.

equations linearized around the parallel base flow under consideration at station z are
projected onto 1440 × 128 × 128 Fourier modes along the three Cartesian directions.
Periodicity is assumed in all directions (Oz is the homogeneous streamwise direction
of the jet axis and Ox and Oy two arbitrary perpendicular directions †). In physical
space, this corresponds to a cubic mesh of spacing δx = δy = δz = 0.05 and box
lengths Lx = Ly = 6.4, large enough for confinement due to periodicity in the x-
and y-directions to be weak, and Lz = 72, guaranteeing that the leading edge of the
wave packet does not catch up with its trailing end. The time step δt = 0.005 is
chosen so as to satisfy a CFL-type numerical stability condition δt/δz = 0.1 to be
compared with the value of about 0.5, charateristic of the inverse of the maximum
velocity magnitude. Convergence has been satisfactorily checked by performing a high-
resolution simulation with 2160 × 196 × 196 mesh points and δx = δy = δz = 0.033.

In order to mimic the Dirac delta-function forcing in space and time, a divergence-
free initial Gaussian perturbation of characteristic velocity perturbation amplitude
0.1 contained within a sphere of radius ρ = 0.5 is imposed. As in Delbende et al.,
(1998), the impulse is centred at z0 = 15, r0 = 1 and θ = 15◦.

The impulse response is analysed by choosing as state variable the axial velocity
perturbation uz(x, y, z, t) which is determined at the nodes of a cylindrical grid
uz(r, θ, z, t). The cylindrical coordinate space is discretized into 40 points in the radial
direction in the range 0 � r � Rmax = Ly and 32 points in the azimuthal direction.
The implied azimuthal wavenumber range restriction |m| < 16 does not introduce any
aliasing error since the neglected modes are all stable for the flows under consideration.

3.2. Diagnostic tools

In the laboratory frame, the development of the wave packet has to be considered
along the specific ray (z − z0)/t = 0. Let uz(r, m, z, t) denote the azimuthal Fourier

† The homogeneous streamwise coordinate z in the local instability study should not be mixed
up with its inhomogeneous counterpart associated with the base flow.
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transform of uz(r, θ, z, t). According to steepest-descent arguments (Bers 1983), the
long-time behaviour of the impulse response along the ray (z−z0)/t = vg is dominated
by the mode with highest spatio-temporal growth rate according to the formula

ur (r, m, z, t) ∝ g0(r, m)t−1/2exp[k0(m)(z − z0) − ω0(m)t], t → ∞, (3.2)

where g0(r, m) is the eigenfunction and k0(m) and ω0(m) represent the complex
absolute wavenumber and frequency observed in the laboratory frame. Following and
adapting Delbende et al.’s methodology, one first recovers the amplitude and phase

Am(z, t) =

(∫ Rmax

0

|uz(r, m, z, t)|2r dr

)1/2

, (3.3)

φm(z, t) = arg(uz(r0, m, z, t)), with 0 � φm(k, t) < 2π. (3.4)

The absolute growth rate ω0,i(m) and frequency ω0,r (m) are then calculated via the
formulae

ω0,i(m) ∼ ln(Am(z0, t2)/Am(z0, t1))

t2 − t1
+

ln(t2 − t1)

2(t2 − t1)
, (3.5)

ω0,r (m) ∼ −φm(z0, t3) − φm(z0, t2)

t3 − t2
, (3.6)

where t1, t2 and t3 are suitably selected as discussed below. Similarly, the real
and imaginary parts of the absolute wavenumber observed at z/t = 0 are retrieved
according to

k0,r (m) ∼ φm(z0 + δz, t2) − φm(z0, t2)

δz
, (3.7)

k0,i(m) ∼ − ln

(
Am(z0 + δz, t2)Am(z0, t1)

Am(z0, t2)Am(z0 + δzt1/t2, t1)

)
t2

δz(t2 − t1)
. (3.8)

A demodulation procedure based on both the Hilbert transform as in Delbende
et al., (1998) and on the usual azimuthal Fourier transform uz(z, r, m, t) have been
implemented to determine Am(z, t) and φm(z, t) given by (3.3)–(3.4). As mentioned
in Gallaire & Chomaz (2003), the Hilbert transform degrades the tails of the wave
packet considerably when its spectrum does not vanish at k = 0. As a result, the
determination of ω0,i when it is close to zero becomes less accurate. The second
procedure, however, also has a shortcoming: since the signal is not demodulated,
growth rates and other quantities may oscillate in time and space due to phase
variations.

As noted by Delbende et al., (1998), the times t1 and t2 and the time-increment t2 −t1
selected to numerically evaluate (3.5), (3.7) and (3.8) have to be large enough in order
to ensure convergence towards the leading most-unstable mode and circumvent low-
frequency oscillations. On the other hand, in order to compute the mode frequency
(3.6), the time interval t3 − t2 has to be short enough so as to circumvent the difficulties
associated with the discontinuous nature of the phase function φm(k, t) whenever it
reaches 0 or 2π. In the present study, growth rates are calculated as follows: a sequence
of times τn = τ0 + nτ with τ0 = 9 and τ = 1.5 is first chosen. Formulae (3.5)–(3.6) are
then applied to successive time intervals in the sequence, with t1 = τn−1, t2 = τn or τn+1

or τn+2 and t3 = τn + δτ with δτ = 0.01.
The convergent nature of the procedure is assessed by displaying successive

estimates of the absolute growth rate ω0,i(m = 1) (figure 3a) and frequency ω0,r (m = 1)
(figure 3b) as a function of τn. The three choices for t2 are distinguished by
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Figure 3. Convergence properties of the absolute frequency ω0(m= 1) as a function of discrete
time τn for Re = 200, S = 1 and z = 4.6: (a) absolute growth rate ω0,i and (b) frequency ω0,r .
(a) Formula (3.5) with t1 = τn−1 and t2 = τn (�), τn+1 (�),τn+2(�). Hollow symbols: Hilbert
transform method; solid symbols: Fourier transform method.
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Figure 4. Streamwise evolution of the maximum temporal growth rate over all axial
wavenumbers for various azimuthal modes m= 1, 2, 3, 4, 5 at Re = 200 and S = 1.

different symbols, as detailed in the figure caption. Hollow symbols are obtained via
Hilbert transform and solid symbols via the usual Fourier transform. The asymptotic
convergence of the estimates for ω0,i and ω0,r is clearly apparent, justifying the entire
procedure.

4. Comparison between DNS results and predictions of nonlinear global mode
theory

The above diagnostic tools may now be applied at different streamwise stations in
order to evaluate the relevance of nonlinear global mode concepts, as introduced for
instance by Pier et al. (2001). A synthetic view of local temporal instability properties
is obtained by displaying the streamwise evolution of the maximum temporal growth
rate (over all axial wavenumbers) for various azimuthal wavenumbers m =1 . . . 5
(figure 4). Higher-order azimuthal modes have been checked to remain stable. The
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Figure 5. Streamwise evolution of the real part ω0,r of the local absolute frequency (upper
curve, right axis) and imaginary part ω0,i (lower curve, left axis) for mode m= 1 as a function
of the streamwise coordinate z for Re = 200 and S = 1. The predicted real absolute frequencies
ω

C/A
0,1 and ω

C/A
0,2 at the C/A transition points are indicated by dashed horizontal lines whereas

the ‘measured’ global frequency ωNL
G is marked by a solid horizontal line.

most unstable mode is observed to be m =1 in the upstream part of the flow (z < 2)
and m =2 further downstream (z > 2). Temporal stability clearly does not succeed in
yielding a sharp mode selection criterion accounting for the observed prevalence of
the m = 1 spiral mode (§ 2).

The local absolutely/convectively unstable nature of the axisymmetric vortex
breakdown state may be summarized by depicting the streamwise evolution of the
absolute growth rate ω0,i(m) and frequency ω0,r (m) as a function of z for different
values of m. The case of the m =1 mode is displayed in figure 5 for the reference
case Re = 200 and S = 1. Two absolutely unstable regions where ω0,i > 0 are clearly
in evidence: a first zone coinciding with the recirculation bubble located between
z

C/A

1 = 1.1 and z
A/C

1 = 3.3 and a second zone in the lee of the bubble for z larger

than z
C/A

2 = 4.7. The occurrence of the first region is not unexpected. The presence of
counterflow in the recirculation bubble is known to promote absolute instability. The
existence of a less intense downstream region of absolute instability is in accordance
with the qualitative results of Ruith et al. (2003): the local base flow pertaining to
axisymmetric breakdown was indeed shown to enter the absolutely unstable domain
twice when approximately modelled by a Batchelor vortex.

According to the theoretical analysis of Pier et al. (2001) the observed global
frequency should be given by the real absolute frequency ω

C/A

0,r . In view of figure 5,
two candidate stations are in competition with associated frequencies ω

C/A

0,1 = 1.30 and
ω

C/A

0,2 = 1.22 represented by dashed horizontal lines. The effective global frequency
ωNL

G = 1.18 measured in the DNS is shown by a solid horizontal line in figure 5.
Comparison with the previous values suggests that the downstream transition point
z

C/A

2 may be the wavemaker responsible for the flow synchronization. A similar
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Figure 6. Streamwise evolution of the imaginary part (ω0,i) of the local absolute frequency
for mode m = 2 as a function of the streamwise coordinate z for Re = 200 and S = 1.
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Re = 200 and S = 1. The two spatial absolute growth rates −k
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by straight lines located at the corresponding C/A transition point.

analysis may be carried out for higher values of m. For instance the variations
of ω0,i(m =2) are displayed in figure 6. The helical mode m =2 is seen to remain
convectively unstable at all axial stations. The same behaviour holds for larger m.The
validity of the interpretation in terms of a nonlinear global mode with a front located
at the second transition point z

C/A

2 may be further ascertained by considering the
streamwise amplitude distribution

√
E(z) at t = 1850 (figure 7) extracted from the

DNS, where the energy E(z) is defined as

E(z) =

∫ 2π

0

∫ R

0

1

2

(
u′ 2

z + u′ 2
r + u′ 2

θ

)
rd θ dr. (4.1)

In the above expression, u′
z, u′

r and u′
θ denote the observed nonlinear perturbations

from the axisymmetric breakdown state. The disturbance amplitude isseen to grow
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in two successive stages: the first one occurs near z
C/A

1 , the second near z
C/A

2 . More
strikingly, the slope of the amplitude curve at z

C/A

2 coincides with −k
C/A

0,i,2, i.e. the
spatial absolute growth rate at z

C/A

2 . This feature is in full agreement with the steep

global mode theory of Pier et al. (2001): the linearly selected front at z
C/A

2 should grow
exponentially with the aforementioned spatial growth rate. Note also that the slope

of the amplitude curve at z
C/A
1 is not given by −k

C/A
0,i,1. In other words, the flow selects a

nonlinear global mode with a front located at z
C/A
2 .

The above findings have been further confirmed by performing a similar analysis
at a higher swirl number S = 1.095 and at the same Reynolds number Re = 200.
The axisymmetric breakdown state still displays two absolutely unstable regions and
the second transition point predicts a value ω

C/A

0,2 = 1.26 to be compared with the

‘measured’ value ωNL
G =1.20.

5. Discussion and conclusions
According to the above analyses, spiral vortex breakdown may be interpreted as

a nonlinear global mode which develops on the axisymmetric breakdown state. It is
triggered by the appearance of a locally absolutely unstable region in the wake of the
breakdown bubble. The nonlinear global mode is primarily driven by a front located
at the convective to absolute instability transition station. As in steep global mode
theory, the nonlinear global frequency is thereby given by the absolute frequency
ω

C/A

0,2 at the transition station and the front slope coincides with the absolute spatial
growth rate −k

C/A

0,i,2. In other words, the breakdown bubble is analogous to a bluff
body, the wake of which becomes absolutely unstable. In both instances, self-sustained
oscillations arise in the form of a nonlinear global mode and the frequency selection
mechanisms are identical (see Pier & Huerre 2001). Note again that the weakly non-
parallel assumption is clearly violated by the base flow (figure 2). Furthermore the
absolute wavenumber k0,r = 0.48 corresponds to a wavelength λ0 = 13.1. This is not
small compared to the streamwise inhomogeneity length scale. But it is consistent
with the DNS results (see figure 1b).

It remains to understand the passive role of the absolutely unstable vortex
breakdown bubble which does not seem to partake in the frequency selection.
Currently available weakly non-parallel formulations are incapable of treating such
a strongly non parallel object. We can only speculate that, as in the linear setting
(Chomaz, Huerre & Redekopp 1991), the absolutely unstable region is too small to
be active. Note however that Liang & Maxworthy (2005) and Billant et al. (1998)
have experimentally observed spiral vortex breakdown being initiated within the
recirculation bubble. This phenomenon occurs at a different inlet swirl number and
for a different inlet velocity profile.

Another issue concerns higher-order helical modes which are known to arise at
higher swirl and Reynolds numbers (Ruith et al. 2003). Understanding this process
may involve examining the competition between distinct incipient global modes.

François Gallaire and Michael Ruith gratefully acknowledge the financial support
of Ecole Polytechnique. All computations have been performed at IDRIS-CNRS.
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